

Photo-ionisation for strontium ion QIP

V. Letchumanan^{1,2}, G. Wilpers¹, M. Brownnutt^{1,2}, P. Gill¹, & A.G. Sinclair¹

National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K, Blackett Laboratory, Imperial College London SW 7 2BZ, U.K.

Decoherence

- quantum information experiments with trapped ions require coherence times that are much longer than gate operation times
- motional decoherence is a significant limitation
- large heating rates have been observed in some traps [1,2]
- fluctuating patch potentials on electrode surfaces are thought to be the cause of large heating rates

Resonance-enhanced photoionisation

- highly efficient: requires greatly reduced atomic flux
- reduces electrode contamination and patch potentials
- also eliminates build-up of charge on insulating surfaces
- has been demonstrated for Ca+ ion trap experiments [3-5]

photo-ionisation.

290

e-beam

-250

270

day from 20-Jan-05

-300

Reduced micromotion fluctuations

instant improvement

on fluctuations of

voltages

micromotion compensation

Photoionisation efficiency

- compare trap loading characteristics of electron impact and photoionisation
- estimate an upper limit to the strontium source temperature using readings from a thermocouple attached to the strontium source

	electron impact ionisation	photoionisation
Loading temperature	~350°C (623K)	~200°C (473K)
Sr partial pressure	~10 ⁻⁵ torr	~10 ⁻⁹ torr
Observed loading efficiency	~0.25	~0.9
(#loads / #attempts)		

 conclude that the atomic flux required for photoionisation loading of Sr is at least 10⁴ times less than that required for electron impact ionisation

Isotope selectivity

- isotope abundance: 84 (0.56%), 86 (9.86%), 87 (7.00%), 88 (82.58%)
- should be able to load chosen isotopes by ensuring that power and Dopplerbroadening of the 461 nm transition is minimised
- 87-88 isotope shift for 461 nm transition is 56 MHz

References

- [1] Q.A. Turchette et al, Phys. Rev. A 61, 063418 (2000).
- [2] R.G. DeVoe and C. Kurtsiefer, Phys. Rev. A <u>65</u>, 063407 (2002).
- [3] Kjærgaard et al, Appl. Phys. B <u>71</u>, 207 (2000).
- [4] S. Gulde et al, Appl. Phys. B <u>73</u>, 861 (2001).
- [5] D.M. Lucas *et al*, Phys. Rev. A <u>69</u>, 012711 (2004).
- [6] M.A. Baig *et al*, Chem. Phys. Lett. 296, 403 (1998).

This work is supported by NPL's strategic research programme and by EU contract IST-2001-38875-QGATES.